APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORMS

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

May 24, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-2752 and your project: 4-12812 JPL GW Mon 2Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

APCL Analytical Report

Service ID #: 801-042752 Collected by: TM/JJ

Collected by: 1M/33 Collected on: 04/29/04 Received: 04/29/04 Extracted: N/A

Tested: 04/29-05/05/04

Reported: 05/12/04

Sample Description: Water from MW-19

Project Description: 4-12812 JPL GW Mon 2Q04

Analysis of Water Samples

				Δ	nalysis Resul	
Component Analyzed	Method	Unit	PQL	EB-1-4/29/04 04-02752-1	MW-19-1 04-02752-2	MW-19-2 04-02752-3
BICARBONATE	SM2320B	mg/L	2	< 2	125	175
CARBONATE	SM2320B	$mg-CaCO_3/L$	2	< 2	< 2	< 2
РҢ	9040B	pH unit	0.01	6.20	7.19	6.71
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	mg/L	10	< 10	258	604
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	I
PERCHLORATE	314.0	${\sf mg/L}$	0.004	< 0.004	< 0.004	0.0045
Dilution Factor				1.25	4	20
CHLORIDE CL-	300.0	$_{ m mg/L}$	0.2	0.18J	20.8	100
NITRATE AS N	300.0	mg/L	0.04	0.074	3.2	13.7
SULFATE SO ₄	300.0	${\sf mg/L}$	0.5	< 0.63	27.9	139
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}$ g/L	0.1	0.57	0.58	10.0
LEAD	200.8	$_{\mu \mathrm{g/L}}$	0.12	< 0.12	0.23	< 0.12
Dilution Factor		·		1	1	1
ARSENIC	200.9	$_{\mu}$ g/ $ m L$	5	< 5	< 5	< 5
Dilution Factor				1	1	1
CALCIUM	200.7	$_{\mu}\mathrm{g/L}$	200	197J	42,200	118,000
IRON	200.7	$_{\mu}$ g/L	50	136	3,500	973
MAGNESIUM	200.7	$_{\mu}\mathrm{g/L}$	100	< 100	16,300	43,300
POTASSIUM	200.7	$_{\mu \mathrm{g}}/\mathrm{L}$	400	104J	2,420	2,860
SODIUM	200.7	$_{\mu}\mathrm{g/L}$	2000	383J	15,300	33,000
VOLATILE ORGANIC COMPOUNDS		,				
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	0.4J
BROMOFORM	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu }\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g}/\mathrm{L}$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu \mathrm{g/L}}^{\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	0.6

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-2752 h Page: 1 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

_					analysis Resul	t
Component Analyzed	Method	Unit	PQL	EB-1-4/29/04 04-02752-1	MW-19-1 04-02752-2	MW-19-2 04-02752-
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu \mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}^{\rm g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
4-METHYL-2-PENTANONE (MIBK)	524.2	μg/L	10	< 10	< 10	<10
METHYLENE CHLORIDE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	μg/L	1	<1	< 1	< 1
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524,2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	0.8
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	0.3J
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-2752 h Page: 2 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analy	sis Result	
Component Analyzed	Method	Unit	PQL	MW-19-3 04-02752-4	MW-19-4 04-02752-5	MW-19-5 04-02752-6	TB-1-4/29/0 04-02752-7
BICARBONATE	SM2320B	mg/L	2	228	168	154	-
CARBONATE	SM2320B	$mg-CaCO_3/L$	2	< 2	< 2	< 2	-
PH	9040B	pH unit	0.01	7.54	7.63	7.75	_
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	mg/L	10	436	450	448	_
CHROMIUM (VI)	7196	${\sf mg/L}$	0.01	< 0.01	< 0.01	< 0.01	-
Dilution Factor				10	8	12.5	1
CHLORIDE CL	300.0	$_{ m mg/L}$	0.2	59.2	47.4	70.5	_
NITRATE AS N	300.0	${\sf mg/L}$	0.04	9.9	5.5	0.98	-
SULFATE SO ₄	300.0	mg/L	0.5	65.6	49.5	< 6.3	_
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	$_{ m mg/L}$	0.004	0.0033J	< 0.004	< 0.004	-
Dilution Factor				1	1	1	1
ARSENIC	200.9	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5	_
Dilution Factor		<i>F</i> 0.		1	1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	10.7	7.3	5.4	_
LEAD	200.8	$_{\mu \mathrm{g}}^{\mu \mathrm{g}/\mathrm{L}}$	0.12	< 0.12	< 0.12	< 0.12	_
Dilution Factor		μο,		1	1	1	1
CALCIUM	200.7	$_{\mu}\mathrm{g/L}$	200	82,400	54,500	44,600	_
IRON	200.7	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	50	409	158	563	_
MAGNESIUM	200.7	μg/L	100	31,800	27,700	33,200	_
POTASSIUM	200.7	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	400	2,580	2,230	2,710	_
SODIUM	200.7	μg/L	2000	29,700	26,200	31,800	_
VOLATILE ORGANIC COMPOUNDS		μοι –		_0,.00	-0,-00	02,000	
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	μg/L	10	< 10	<10	< 10	< 10
CARBON TETRACHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}^{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	0.7	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMOETHANE (EDB)	524.2		0.5	< 0.5	< 0.5		< 0.5
DIBROMOMETHANE (EDB)	524.2	μg/L				< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2 524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE		$_{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,0-DIORODENGENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-2752 h Page: 3 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	MW-19-3 04-02752-4	Analy MW-19-4 04-02752-5	rsis Result MW-19-5 04-02752-6	TB-1-4/29/04 04-02752-7
1,4-DICHLOROBENZENE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHENE (TOTAL)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENÈ	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	< 1	< 1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	< 10	<10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	0.8	1.0	2.9	< 0.5
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE		$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

".": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director Applied P & Ch Laboratory

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 Cl-0470 D003 N 04-2752 h Page: 4 of 4

13760 Magnolia Ave., Chino CA 91710Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW Mon 2Q04/MW-19/4-12812

For GEOFON, Inc.

APCL Service No: 04-2752

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID	
MW-19-5	04-02752-6	
MW-19-4	04-02752-5	
MW-19-3	04-02752-4	
MW-19-2	04-02752-3	
MW-19-1	04-02752-2	
EB-1-4/29/04	04-02752-1	
TB-1-4/29/04	04-02752-7	

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)), 314.0 (Perchlorate, low level), 300.0 (Anions, by IC), 5M2320B (Carbonate), 9040B (pH), 160.1 (Solids, Total Dissolved (TDS)), 200.7 (Metals, by ICP), 200.9 (Arsenic, As, by GFAA), 200.8 (Chromium, Lead by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts of 0.154 ug/L and 0.236 ug/L was detected in the CCBs analyzed at 15:32 and 16:12, respectively, higher than 0.1 ug/L reporting limit. Chromium was not detected in the associated Method Blank. Chromium was detected in the most of the field samples in the amounts significantly exceeding

CADHS ELAP No: 1431 APCL Case Narrative: 04-2752 05/24/2004 Page: 1 2100

the reporting limit. The concentrations in the samples EB-1-4/29/04 and MW-19-1 were 0.57 ug/L and 0.58 ug/L, respectively.

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova // S Associate QA/QC Director Applied P & CH Laboratories

CADHS ELAP No: 1431 APCL Case Narrative: 04-2752 05/24/2004 Page: 2 2101

GEOFON
INCORPORATED

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

MW-19

22632 GOLDE DIAMOND BAI				• FAX (909) 396-145	5	1	1W-	17										$\mathcal{O}\mathcal{O}$	73		
GEOFON'S LAB COORDINATOR	LAB COORD	NATOR'S P	HONE		LAB COOF	RDINATOR'S F			LABO	RATORY	SERVICE	10	LABOR	LATORY	CONTAC	т		MAIL REPORT (C	OMPANY NA	ME)		
Scott Buhmu	90	<u> 93</u>	96.70	de 2	90	<u> </u>	961	455	Ш.				Ke	unu	10	la	X	GEC	FON	1		
PROJECT NAME: JPC GW Man 2004	PROJECT LO	DEATION S				PROJ 4 /-	ECT NUMBI	er 2	909		> 182	28	ABOR 90	ATORY 95	14x 90	149	8	RECIPIENT NAME	Force	<u> </u>		
PROJECT CONTACT	PROJECT PH	ONE NUMBI	ER	ا م	PROJECT	FAX				RATORY		5						ADDRESS O				
J. V. Jano				27		939	16/4	<u>05</u>	131	<u> 760</u>	<u> </u>	asr	<u>) 0 (1</u>	<u>a k</u>	<u>due.</u>			22632 Coc	orlen S	Borings	<u> L., St</u>	270
PROJECT ADDRESS 4800 DOW GROVE	Pacc			ا ۵۰	CLIENT	~~ S	3625	$\nabla \cdot \mathbf{I}$		STATE A		ODE	١	91	716	`		CITY, STATE AND	ZIPCODE	01		765
PROJECT MANAGER	PROJECT MA	ANAGER'S	•		PROJECT	MASSAGER'S		1.0	 	M	Q_1.		<u></u>	"	//	/	30/1/	wanion	a cu		7/	رها
Tony Ford	PROJECT MA	09 3	396	7662	90	939	6 14	55		nalyses	/.5				67		52410					
1 1 ()						<u></u>	-01·/	<u></u>	7 🗸	317	\ }\	```\	Ź			(4)	/					
Sample Identifier	.	Matri	\	se is	THE PIE	Served * 0	Cont	Level	1		*			100 m	% /		/		Com	ments		
1 MW-19-5	I\	W	4 29 04	0918	1000 HC1	70	皿	Norma		X	X	Х	X	X	,			<u> </u>				
2 MW-19-4		1	1	102/	INGRE	1 1	1	1 7		Z	\ <u></u>	7	7	Ż					-,, -,,.			_
		+	-	1001		4	$\vdash \downarrow$	┤—┤	<u> </u>	1		\triangle	Δ	/ \			1.15					
3 MW-19-3		1 1		1052		12			$ \times $	X	X	$ \mathbf{X} $	X	X			M2	1W2/Z				
4 MW-19-2				1140		16			X	X	X	X	X	X				Oi	75	9		
5 MW-19-2				1203		Ĭ			$ \overline{} $./	٠,	X	×					<u> 7</u> 2	10) ~		
=B-1-4/28/	154			100	H	1	 }-	+	X	×	X			X					<u> </u>			
6				1154	4	4			X	X	1	7	X	X					-			
7 TB-2-4/29	104	∜	4	_	HU	2	4	14	X										•			
8					<u> </u>	—	 "-				 											
						/	N	Jap		ļ	<u> </u>						ļ					
9]		/ ~	4.	29.0	1													
					/	<u> </u>	7-	4						-		<u> </u>	 		: -			
10														<u> </u>	1							
SAMPLES COLLECTED BY: TM 4 3			COURJE	AND AIR BIL	LL NUMBER:											•	COOL	ER TEMPERATURE (J	PON RECEIPT			
RELINQUISHED BY				R	ECEIVED BY	12 1	,	DATE 4/29/0	TIN							SAN	APLE'S C	ONDITION UPON REC	CEIPT		_	
John John				len	1 100	mark (4/291												-		
Xelm Lamila			- √	la l	14/1			4/29/04														
THE TOTAL PROPERTY OF THE PARTY			<u> </u>				_		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~												
Dis	tribution:	: White	- Labo	oratory (To be re	eturned v	vith An	alvtical	Renort`)· Ga	ldenr	od - I	Proje	ct Fil	e V	ellow	- Pro	iect Data Ma	anager			

Applied P & Ch Laboratory

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Receiving Checklist

APCL ServiceID 2752 Client Name/Project: Good JPL
1. Sample Arrival
Date/Time Received 4/29/04 1420 Date/Time Opened 4/29/04/420 By (name): North Charles
Custody Transfer: 🗆 Client 🔲 Golden State 🔲 UPS 🖊 🗇 US Mail 🔲 FedEx 🔛 APCL Empl://
2. Chain-of-Custody (CoC)
With Samples?
3. Shipping Container/Cooler
Cooler Used? # of Cooled by:
(Cooler temperature measured from temp blank if present, otherwise measured from the cooler). Cooler Custody Seal?
4. Sample Preservation
☐ pH <2 ☐ pH >12 If Not, pH = Preserved by: ☐ Client ☐ APCL ☐ Third Party
5. Holding-time Requirements
□ pH 24hr □ BACT 6/24hr □ Cr ^{VI} 24hr □ NO ₃ 48hr □ BOD 48hr □ Cl ₂ ASAP □ Turbidity 48hr □ DO ASAP □ Fe(II) ASAP □ HT Expired? □ Client notified?
6. Sample Container Condition
☐ Intact? ☐ Broken? ☐ Documented? Number:
Type: Oplastic Iglass Tube: brass/SS Tedlar Bag
Quantity OK?
☐ Caps tight? ☐ Air Bubbles? ☐ Anomaly? Labels: ☐ Unique ID? ☐ Date/Time ☐ Preserved?
7. Turn Around Time
7. Turn Around Time Std (7-10 days) Not Marked
8. Sample Matrix
☐ Drinking H_2O ☐ Other Liq ☐ Soil ☐ Wipe ☐ Polymer ☐ Air ☐ Other: ☐ Unknown ☐ Ground H_2O ☐ Sludge ☐ Filter ☐ Oil/Petro ☐ Paint ☐ W. Water ☐ Extract ☐ Unknown
9. Pre-Login Check List Completed & OK?
ALL OK? (if not, attach docs) Client Contact? (Name: \Date/Time:
Received/Checked by: Printed: 29 Apr 2004 7:31 a.m.
Samples must be analyzed for results to reflect total concentrations. Results generated outside required of holding times are considered minimal values and may be used to define waste as hazardous but not as non-hazardous.

DocumentFile: |neal.texfiles|smprcl.tex.

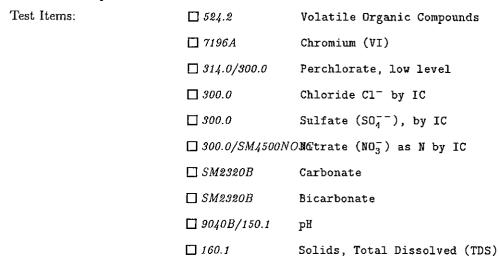
Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Login: Check List

$04\text{-}02752\ (0470\text{--}\ 223)\ (2202777\text{--}\ 223)$

04/30/04


Part 1: General Information

1.0	av 1. General Inic	of illustroil	
4	Company Information	Name:	GEOFON, Inc.
		Address:	22632 Golden Spring Dr Ste 270 ,Diamond Bar ,CA 91765
ф	Project Information	Project Description:	JPL GW Mon 2Q04
			MW-19
		Project #:	4-12812
ф Т	Billing Information	P.O. #:	
		Bill Address:	22632 Golden Spring Dr Ste 270 ,Diamond Bar ,CA 91765
		Lab Project ID:	
		Client Database #:	3
包	Receiving Information	Who Received Sample?	Kenny Chan
		Receiving Date/Time:	04/29/04 1420
		COC No.	0093
þ	Shipping Information	Shipping Company	APCL pick up
		Packing Information:	Cooler/Ice Chester
		Cooler Temperature:	4.0 ° C
þ	Container Information	Container Provider:	Client
þ	Sampling Information	Sampling Person:	TM/JJ
		Sampling Company:	Client
ф	Turn-Around-Time Option	on:	Normal
1	QC Option:		NEESA C
丑	Disposal Option:		Not specify

Part 2: Sample Information

Seq. #	Sample ID (on COC)	Sample Sub-ID	APCL Sample ID	Matrix		Preser- vative	•	# of Replica	Condition G, L, B	Collected mmddyy	Hold ?	Composite Group	TAT Days	
1	MW-19-5	VOC	04-02752-6-α	w	V	C	40	3	G	042904	N	0	9	
	MW-19-5	CrVI/314	04-02752-6- eta	W	Р		500	1	G	042904	N	0	9	
	MW-19-5	300	04-02752-6- γ	W	P		500	1	G	042904	N	0	9	
	MW-19-5	Metal	04-02752-6- δ	W	P	N	500	1	G	042904	N	0	9	
2	MW-19-4	VOC	04-02752-5- $lpha$	W	v	C	40	3	G	042904	N	0	9	
	MW-19-4	CrVI/314	04-02752-5- eta	W	P		500	1	G	042904	N	0	9	
	MW-19-4	300	04-02752-5- γ	W	P		500	1	G	042904	N	0	9	
	MW-19-4	Metal	$04\text{-}02752\text{-}5\text{-}\delta$	W	P ·	N	500	1	G	042904	N	0	9	
3	MW-19-3	VOC	$04-0275242\alpha$	W	V	С	40	6	G	042904	N	0	9	
	MW-19-3	CrVI/314	04-02752-4-eta	W	P		500	2	G	042904	N	0	9	
	MW-19-3	300	04-02752-4- γ	W	P		500	2	G	042904	N	0	9	
	MW-19-3	Metal	$04-02752-4-\delta$	W	P	N	500	2	G	042904	N	0	9	
Į	MW-19-2	VOC	04-02752-3- α	W	V	C	40	3	G	042904	N	0	9	
	MW-19-2	CrVI/314	04-02752-3- β	w	P		500	1	G	042904	N	0	9	
	MW-19-2	300	04-02752-3- γ	W	P		500	1	G	042904	N	0	9	
	MW-19-2	Metal	04-02752-3- δ	W	P	N	500	1	G	042904	N	0	9	
i	MW-19-1	VOC	04-02752-2-α	W	v	C	40	3	G	042904	N	0	9	
	MW-19-1	CrVI/314	04-02752-2- β	W	P		500	1	G	042904	N	0	9	
	MW-19-1	300	04-02752-2- γ	W	P		500	1	G	042904	N	0	9	
	MW-19-1	Metal	04-02752-2-δ	W	P	N	500	1	G	042904	N	0	9	
	EB-1-4/29/04	VOC	$04-02752-1-\alpha$	W	V	C	40	3	G	042904	N	0	9	
	EB-1-4/29/04	CrVI/314	04-02752-1- $oldsymbol{eta}$	W	P		500	1	G	042904	N	0	9	
	EB-1-4/29/04	300	04-02752-1-γ	W	P		500	1	G	042904	N	0	9	
	EB-1-4/29/04	Metal	04-02752-1- δ	w	P	N	500	1	G	042904	N	0	9	
	TB-1-4/29/04	TRIP	04-02752-7	W	V	С	40	2	G	042904	N	0	9	

Part 3: Analysis Information

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

May 24, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-2758 and your project : $4\text{-}12812~\mathrm{JPL}~\mathrm{GW}$ Mon $2\mathrm{Q}04$.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

APCL Analytical Report

Service ID #: 801-042758 Collected by: TM/JJ/MM Collected on: 04/30/04

Received: 04/30/04 Extracted: N/A

Tested: 04/30-05/10/04 Reported: 05/12/04

Sample Description: Water from MW-21

Project Description: 4-12812 JPL GW Mon.2Q04

Analysis of Water Samples

				Analysis Result					
Component Analyzed	Method	Unit	PQL	EB-2-4/30/04 04-02758-1	MW-21-1 04-02758-2	MW-21-2 04-02758-3			
BICARBONATE	SM2320B	mg/L	2	< 2	178	277			
CARBONATE	SM2320B	$mg-CaCO_3/L$	2	< 2	< 2	< 2			
PH	9040B	pH unit	0.01	6.89	6.67	6.70			
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	${\sf mg/L}$	10	< 10	771	851			
CHROMIUM (VI)	7196	${\sf mg/L}$	0.01	< 0.01	< 0.01	< 0.01			
Dilution Factor				1	1	1			
PERCHLORATE	314.0	${\sf mg/L}$	0.004	< 0.004	0.0056	0.0038J			
Dilution Factor				1.25	20	20			
CHLORIDE CL	300.0	mg/L	0.2	0.15J	119	146			
NITRATE AS N	300.0	${\sf mg/L}$	0.04	0.13	13.1	9.8			
SULFATE SO ₄	300.0	mg/L	0.5	< 0.63	181	168			
Dilution Factor				1	1	1			
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	2.1	10.9	11.7			
LEAD	200.8	$_{\mu \mathrm{g}}/\mathrm{L}$	0.12	0.25	< 0.12	0.013J			
Dilution Factor		·		1	1	1			
ARSENIC	200.9	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5			
Dilution Factor				1	1	1			
CALCIUM	200.7	$_{\mu \mathrm{g/L}}$	200	< 200	131,000	138,000			
IRON	200.7	$_{\mu \mathrm{g/L}}$	50	148	295	601			
MAGNESIUM	200.7	$_{\mu}\mathrm{g/L}$	100	< 100	44,500	46,400			
POTASSIUM	200.7	$_{\mu}\mathrm{g/L}$	400	121J	2,510	3,710			
SODIUM	200.7	$_{\mu \mathrm{g/L}}$	2000	411J	34,000	71,100			
VOLATILE ORGANIC COMPOUNDS									
Dilution Factor				1	1	1			
BENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10			
CARBON TETRACHLORIDE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROETHANE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.7	< 0.5			

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-2758 N Page: 1 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				A	nalysis Resul	t
Component Analyzed	Method	Unit	PQL	EB-2-4/30/04 04-02758-1	MW-21-1 04-02758-2	MW-21-2 04-02758-3
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	0.6	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	0.3J
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	<1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}^{\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	0.4J	1.3
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	0.9	0.6
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-2758 Page: 2 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analy	sis Result	
Component Analyzed	Method	Unit	PQL	MW-21-3 04-02758-4	MW-21-4 04-02758-5	MW-21-5	TB-2-4/30/0 04-02758-7
BICARBONATE	SM2320B	mg/L	2	243	173	188	-
CARBONATE	SM2320B	mg-CaCO ₃ /L	2	< 2	< 2	< 2	_
PH	9040B	pH unit	0.01	7.05	7.10	7.42	<u>.</u>
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	mg/L	10	664	447	543	_
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	_
Dilution Factor		G,		1	1	1	1
PERCHLORATE	314.0	mg/L	0.004	0.0043	0.0042	0.0036J	_
Dilution Factor		Ο,		20	10	12.5	1
CHLORIDE CL	300.0	${ m mg/L}$	0.2	114	59.3	71.4	_
NITRATE N-NO3 AS N	300.0	mg/L	0.04	9.9	6.9	7.0	_
SULFATE SO4	300.0	mg/L	0.5	130	75.8	139	-
Dilution Factor	000.0	11.6/ 15	0.0	1	1	1	1
CHROMIUM	200.8	$_{\mu \mathrm{g/L}}$	0.1	12.2	8.3	8.3	-
LEAD	200.8	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.12	< 0.12	< 0.12	0.026J	_
Dilution Factor	200.0	μ6/ υ	U.12	1	1	1	1
ARSENIC	200.9	$_{\mu}$ g/L	5	< 5	< 5	< 5	_
Dilution Factor	200.5	μ6/ 11	Ü	1	1	1	1
CALCIUM	200.7	$_{\mu}\mathrm{g/L}$	200	131,000	79,400	90,600	-
IRON	200.7	με/ L μg/ L	50	318	274	227	_
MAGNESIUM	200.7	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	100	43,000	26,000	31,300	-
POTASSIUM	200.7	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	400	3,220	2,210	2,590	-
SODIUM	200.7		2000	40,700	27,100	33,300	-
VOLATILE ORGANIC COMPOUNDS	200.1	$_{\mu}\mathrm{g/L}$	2000	40,100	21,100	55,500	-
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2		0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2 524.2	$\mu g/L$	0.5				
BROMODICHLOROMETHANE	524.2 524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2 524.2	$\mu g/L$		< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM BROMOMETHANE		μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2 524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2 524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
	524.2 524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE 2-BUTANONE		μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CARBON TETRACHLORIDE	524.2	μg/L	10	< 10	<10	< 10	< 10
CHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE CHLOROETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
	524.2	$\mu g/L$	0.5	0.6	2.2	2.6	< 0.5
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-2758 Approved Since 11/01/94 CI-0470 D003 N 04-2758 Approved Since 11/01/94

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Result							
Component Analyzed	Method	Unit	PQL	MW-21-3 04-02758-4	MW-21-4 04-02758-5	MW-21-5	TB-2-4/30/04 04-02758-7					
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	0.3J	0.7	1.4	< 0.5					
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
METHYL-T-BUTYL ETHER (MTBE)	524.2	μg/L	1	<1	<1	<0.5	< 0.5 < 1					
4-METHYL-2-PENTANONE (MIBK)	524.2	μg/L	10	<10	<10	<10	< 10					
NAPHTHALENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
STYRENE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5	-					
1,1,1,2-TETRACHLOROETHANE	524.2	μ6/ L	0.5	< 0.5	< 0.5		< 0.5					
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5					
TETRACHLOROETHENE	524.2	μg/L	0.5	1.6	2.8	6.4	< 0.5					
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5		< 0.5					
1,2,3-TRICHLOROBENZENE	524.2 524.2	$\mu g/L$	0.5			< 0.5	< 0.5					
1,2,4-TRICHLOROBENZENE	524.2 524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,1,1-TRICHLOROETHANE	524.2 524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,1,2-TRICHLOROETHANE	524.2 524.2	$\mu g/L$	0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5					
TRICHLOROETHENE	524.2 524.2	$\mu g/L$	0.5	< 0.5 1	< 0.5	< 0.5	< 0.5					
TRICHLOROFLUOROMETHANE	524.2 524.2	$\mu g/L$			< 0.5	0.5J	< 0.5					
		$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,2,3-TRICHLOROPROPANE 112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
O-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Applied P & Ch Laboratory

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-2758 h Page: 4 of 4

13760 Magnolia Ave., Chino CA 91710Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW Mon.2Q04/MW-21/4-12812

For GEOFON, Inc.

APCL Service No: 04-2758

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID
MW-21-5	04-02758-6
MW-21-4	04-02758-5
MW-21-3	04-02758-4
MW-21-2	04-02758-3
MW-21-1	04-02758-2
EB-2-4/30/04	04-02758-1
TB-2-4/30/04	04-02758-7
-	

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)), 314.0 (Perchlorate, low level), 300.0 (Anions, by IC), SM2320B (Carbonate), 9040B (pH), 160.1 (Solids, Total Dissolved (TDS)), 200.7 (Metals, by ICP), 200.9 (Arsenic, As, by GFAA), 200.8 (Target Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

None

CADHS ELAP No: 1431 APCL Case Narrative: 04-2758 05/24/2004 Page: 1 2 3 0 0

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova / S Associate QA/QC Director Applied P & CH Laboratories

CADHS ELAP No: 1431 APCL Case Narrative: 04-2758 05/24/2004 Page: 2 3 0 1

GEOFON
 <u> </u>

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

! N C O R P O R A T E D
22632 GOLDEN SPRINGS DR., SUITE 270

MW-21

0094

	DIAMOND BAP					WV (909)																							
GEOFO	V's LAB COORDINATOR		RDINATOR			1		DINATOR'S				U	ABORAT	ORY S	ERVICE	ID	•		CONTAC			MAII	L REPORT						
\propto	out Burmen	40	<u> 93</u>	96	76	62	40	93	<u>961</u>	<u>45</u>	<u>ජ</u>						Ьo	MIL	<u>u (</u>	har	<u> </u>		زن)	<u> </u>	Po	<u> </u>			
		PROJECT	LOCATION	7 7				PRO	JECT NUM /-/2	BER Q1	2	7	ABORAT	ORY P	HONE	20	LABOR	ATORY (\$ <u>`</u>	149	0	RECI	PLENT N	AME (<u></u> -	7			
250	1. GW How. 2004						PROJECT F.		1-16	51	<u> </u>		<u> </u>				70	70	90	1770	2	1	PLENT NA	<u> </u>	<u>L UY</u>	<u>a</u>			
	TCONTACT J. Jones	PROJECT	92r	、 某 つ	129	}	Q.	<u>93</u>	72. K	45	55	12	えつけ	OKY A	WUKES!	, ^^	mal.	· n.	Α	e e		221	**E33 `	C.	مالم	٠ ٩ ـ		٨.	حد حــا
PROJEC	CT ADDRESS	CITY, STA	TE AND ZI	ا ن - IPCODE	<u>, </u>	ł	CLIENT					CI	ン / (TY. 5TA	TE A	√D ZIPC(ODE (Jon	سارو	ΛW		-	CITY	'. STATE	AND ZI	bCODE ロロ配	الات د	1062	174.)	<u>St. 21</u>
480	On Car Giore	Pas	adı	MA	. CA	1	Nau	u~ :	3618	II	/		<u>'h</u>	m	K) .	CI	2	91,	शि	`		1) m	ay	BY	بيد	° A	91	165
PROJE	DO OAK GLOVE.						PROJECT M	ANAGER'S	FAX			1	<u> </u>	~!\	, ,	\nearrow	100	1257						~		~~-!			. 🗤
To	y Fad	PHONE	709	390	2760	62	90	939	761	45	55		Analy 542	es.	15	\mathcal{A}	23 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	".K	₹ <u>`</u>	530	/	/	/						
آي	ð			,	7			60/	_ <u>~</u>	7		7	Allal	`.<		%	(2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	60				/	,						
Item	Sample Identifier			atrix	/ .e	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ce/ 2	served #	Cont	د م	evel/	5	1/2/2	کمرز		/ b	(C3)	ور کوری		//	//				Com	ments			
	<u> </u>		4,	111	Dale	<u> </u>	7 8kg	/ *	/ (<u>Y</u>	<u>/ < ^y</u>		5/	∧ ∧	\$ 7 √	<u>∕₹</u>	10°i	3/		,									
1	MW-21-5		W	4/3	50/04 D	102	HU03 HU03	20	皿		Name		$\langle \rangle$	ζl	χ	X	X												
2	MW-21-4		ì		1 .				}			一,	7	7	7	1/	J												
-	11 01.2			┿.	1-10	730	 		1-1		\rightarrow	- -7		X	*	_Χ_	X			 		_	8 11		0				
3	MW-21-3					752						∀	/ s	$\langle $	\times	X	X				-6) -	7	9	0		·		
	MW-21-2			1		0.0								7			1				-								
4		·		_	0	817		4	$\perp \perp$	_		7		\leq	X	X	X												
5	MW-21-1				1 6	0847		14				١,	\times \mid	۷	X	X	🗸				<u> </u>	IM.	<u> </u>						
\vdash	= 13-2-4/30	15.1			+ +				╁╌╂	\dashv	-+	+		\dashv			1~	├		┝									·
6	- () - 4 - 1/35	7.0 9			1 1	0144	4	2				;	/ ;	\neq	7	/ -	X							-					
7	TB-2-4/30	104	7	7	-		H4	2	4		7		ΧĪ											t, `.	i.			•	
\vdash			7	 \	'				+ "			- '	<u> </u>	\dashv				 	├					*	च			-	
8									1	7	a .) - (I	On	حد															
9				_	-	_						-	7	\neg														•	
				\bot					4	_	4	. 4		\dashv			-			\sqcup									
10	··				ŀ			4	 			+-	$^+$				†-												
SAMI	LES COLLECTED BY: TM A	<u> 3</u> 2+	<u> </u>	cc	OURIER A	ND AIR BIL	L NUMBER:		٠								.1	L	1	1——	COOL	ER TÉMI	PERATUR	E UPON	V RECEIP	T			
	RELINQUISHED BY	<u> </u>	11.11			RE	EÇEJYED BY			I	DATE		TIME	П						SAM	APLE'S C	ONDITIO	ON LIPON	RECEI	PT				
	1. D. Jones			1	Zuch	e/2) 2	then	_ر_		4	1-30-0	4/1),40	<u> </u>															-
<u> </u>									. <u>.</u>	1	•	<u>′</u>		\perp															
	· · · · · ·									\perp		\perp		\downarrow	···														
	·									⊥_				\perp															·· ····
	Dis	tributio	n: Wh	nite - I	Labora	atory (T	To be re	turned	with A	nal	ytical	Repo	ort);	Gol	denre	od -	Proje	ct Fil	ie; Y	ellow	- Pro	ject l	Data 1	Man	ager				

Applied P & Ch Laboratory

13760 Magnolia Ave., Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Receiving Checklist

APOL ServiceID: 2758 Client Name/Project: Geocon JPL
Date/Time Received 4/30/04 1045 Date/Time Opened 4/30/04/045 By (name): Blowd 4/10
Custody Transfer: Client Colden State UPS US Mail FedEx APCL Empl:
2. Chain-of-Custody (CoC)
☑ With Samples? ☐ Faxed? ☐ Client has Copy? ☐ Signed, dated? By:
3. Shipping Container/Cooler
Cooler Used? # of / Cooled by: Ice Blue Ice Dry Ice None Temp °C 34
(Cooler temperature measured from temp blank if present, otherwise measured from the cooler). Cooler Custody Seal?
4. Sample Preservation
☐ pH <2 ☐ pH >12 If Not, pH = Preserved by: ☐ Client ☐ APCL ☐ Third Party
5. Holding-time Requirements
☐ pH 24hr ☐ BACT 6/24hr ☐ Cr ^{VI} 24hr ☐ NO₃ 48hr ☐ BOD 48hr ☐ Cl₂ ASAP ☐ Turbidity 48hr ☐ DO ASAP ☐ Fe(II) ASAP ☐ HT Expired? ☐ Client notified?
6. Sample Container Condition
✓ Intact? ☐ Broken? ☐ Documented? Number: Type: ☐ plastic ☐ glass ☐ Tube: brass/SS ☐ Tedlar Bag ☐ Quantity OK? ☐ Leaking? ☐ Anomaly? ☐ Caps tight? ☐ Air Bubbles? ☐ Anomaly? Labels: ☐ Unique ID? ☐ Date/Time ☐ Preserved?
7. Turn Around Time
☐ RUSH TAT: ☐ Std (7-10 days) ☐ Not Marked
8. Sample Matrix
☐ Drinking H ₂ O☐ Other Liq ☐ Soil ☐ Wipe ☐ Polymer ☐ Air ☐ Other: ☐ Ground H ₂ O ☐ Sludge ☐ Filter ☐ Oil/Petro ☐ Paint ☐ W. Water ☐ Extract ☐ Unknown
9. Pre-Login Check List Completed & OK?
ALL OK? (if not, attach docs)
Received/Checked by: Wenny Printed: 30 Apr 2004 7:22 a.m.
amples must be analyzed for results to reflect total concentrations. Results generated outside required of holding times are considered minimal

*HT: Sa values and may be used to define waste as hazardous but not as non-hazardous.

DocumentFile: [neal.texfiles]amprel.tex.

Applied P & Ch Laboratory

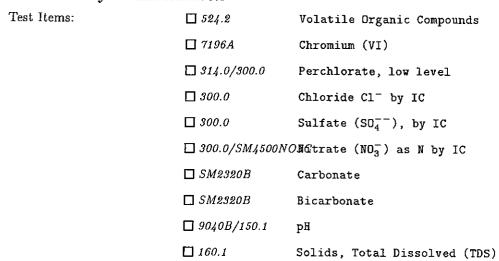
13760 Magnolia Ave. Chino CA 91710Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Login: Check List

 $04\text{-}02758 \ (0470_\ 224) \ (2202777_\ 224)$

04/30/04

Part 1: General Information


_			
中	Company Information	Name:	GEOFON, Inc.
		Address:	22632 Golden Spring Dr Ste 270 ,Diamond Bar ,CA 91765
þ	Project Information	Project Description:	JPL GW Mon.2Q04
			MW-21
		Project #:	4-12812
þ	Billing Information	P.O. #:	
		Bill Address:	22632 Golden Spring Dr Ste 270 ,Diamond Bar ,CA 91765
		Lab Project ID:	
		Client Database #:	3
<u> </u>	Receiving Information	Who Received Sample?	Richard Stinson
		Receiving Date/Time:	04/30/04 1045
]		COC No.	0094
3	Shipping Information	Shipping Company	by Client
		Packing Information:	Cooler/Ice Chester
L		Cooler Temperature:	3.4 ° C
]	Container Information	Container Provider:	Client
1	Sampling Information	Sampling Person:	TM/JJ/MM
		Sampling Company:	Client
þ	Turn-Around-Time Opti	on:	Normal
<u></u>	QC Option:		NEESA C
þ	Disposal Option:		Not specify

04-02758 Check List Login on 04/30/04 File: CHG004c.tex

Part 2: Sample Information

Seq. #	Sample ID (on COC)	Sample Sub-ID	APCL Sample ID	Matrix			Vol, ml Am. g	,,	Condition G, L, B	Collected mmddyy	Hold?	Composite Group	TAT Days	
I	MW-21-5	voc	04-02758-6-α	W	v	С	40	3	G	043004	N	0	9	
	MW-21-5	CrVI/314	04-02758-6- eta	W	P		500	1	G	043004	N	0	9	
	MW-21-5	300	04-02758-6- γ	W	Р		500	1	G	043004	N	0	9	
	MW-21-5	Metal	04-02758-6- δ	W	Р	N	500	1	G	043004	N	0	9	
2	MW-21-4	VOC	04-02758-5- α	W	V	C	40	3	G	043004	N	0	9	
	MW-21-4	CrVI/314	04-02758-5- eta	W	P		500	1	G	043004	N	0	9	Ь
	MW-21-4	300	$04-02758-5-\gamma$	W	P		500	1	G	043004	N	0	9	ф
	MW-21-4	Metal	04-02758-5- δ	W	P	N	500	1	G	043004	N	0	9	ф
	MW-21-3	VOC	04-02758-4-α	W	v	C	40	3	G	043004	N	0	9	ф
	MW-21-3	CrVI/314	04-02758-4- eta	w	P		500	1	G	043004	N	0	9	ф
	MW-21-3	300	04-02758-4- γ	W	P		500	1	G	043004	N	0	9	£
	MW-21-3	Metal	04-02758-4- δ	W	P	N	500	1	G	043004	N	0	9	Е
	MW-21-2	VOC	04-02758-3- α	W	V	C	40	3	G	043004	N	0	9	E
	MW-21-2	CrVI/314	04-02758-3- $oldsymbol{eta}$	W	Р		500	1	G	043004	N	0	9	E
	MW-21-2	300	04-02758-3- γ	W	P		500	1	G	043004	N	0	9	
	MW-21-2	Metal	04-02758-3- δ	W	P	N	500	1	G	043004	N	0	9	Ь
	MW-21-1	VOC	04-02758£2 ² α	W	V	C	40	6	G	043004	N	0	9	Ь
	MW-21-1	CrVI/314	04-02758-2- β	W	P		500	2	G	043004	N	0	9	Ь
	MW-21-1	300	04-02758-2- γ	W	P		500	2	G	043004	N	0	9	
	MW-21-1	Metal	04-02758-2- δ	W	P	N	500	2	G	043004	N	0	9	
	EB-2-4/30/04	VOC	04-02758-1-α	W	V	C	40	3	G	043004	N	0	9	
	EB-2-4/30/04	CrVI/314	04-02758-1- $oldsymbol{eta}$	W	P		500	1	G	043004	N	0	9	
	EB-2-4/30/04	300	04-02758-1- γ	W	Р		500	1	G	043004	N	0	9	
	EB-2-4/30/04	Metal	04-02758-1-δ	W	P	N	500	1	G	043004	N	0	9	Б
	TB-2-4/30/04	TRIP	04-02758-7	W	V	C	40	2	G	043004	N	0	9	Б

Part 3: Analysis Information

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

May 26, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-2778 and your project : 4-12812 JPL GW Mon 2Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

APCL Analytical Report

Service ID #: 801-042778 Collected by: TM/JJ/MM Collected on: 05/03/04

Received: 05/03/04 Extracted: N/A Tested: 05/03-06/04 Reported: 05/12/04

Sample Description: Water from MW-20

Project Description: 4-12812 JPL GW Mon 2Q04

Analysis of Water Samples

Component Analyzed					\nalysis Resu	
•	Method -	Unit	PQL	EB-3-5/3/04 04-02778-1	MW-20-1 04-02778-2	MW-20-2 04-02778-3
BICARBONATE	SM2320B	mg/L	2	< 2	163	134
CARBONATE	SM2320B	$mg-CaCO_3/L$	2	< 2	< 2	< 2
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
PH	9040B	pH unit	0.01	6.85	7.28	7.91
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	${ m mg/L}$	10	< 10	299	196
Dilution Factor		-		1	1	1
PERCHLORATE	314.0	${\sf mg/L}$	0.004	< 0.004	< 0.004	< 0.004
Dilution Factor		σ,		1.25	4	2
CHLORIDE CL	300.0	mg/L	0.2	0.15J	15.4	8.2
NITRATE AS N	300.0	mg/L	0.04	0.13	2.3	0.84
SULFATE SO ₄	300.0	mg/L	0.5	< 0.63	44.8	26.1
Dilution Factor		Ο,		1	1	1
CHROMIUM	200.8	$_{\mu \mathrm{g}}/\mathrm{L}$	0.1	2.1	6.6	5.1
LEAD	200.8	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.12	0.19	< 0.12	< 0.12
Dilution Factor		μ01		1	1	1
ARSENIC	200.9	$_{\mu \mathrm{g}}/\mathrm{L}$	5	< 5	< 5	< 5
Dilution Factor		μοι –		1	1	1
CALCIUM	200.7	$_{\mu}$ g/L	200	< 200	54,200	35,800
IRON	200.7	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	50	39.0J	112	47.2J
MAGNESIUM	200.7	με, – μg/L	100	<100	18,000	15,500
POTASSIUM	200.7	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	400	112J	2,400	1,780
SODIUM	200.7	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	2000	560J	16,800	13,100
VOLATILE ORGANIC COMPOUNDS	2001.	μοι –		7	,	,
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	1

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-2778 Page: 1 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				1	Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	EB-3-5/3/04 04-02778-1	MW-20-1 04-02778-2	MW-20-2 04-02778-3
CHLOROMETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu} {\sf g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu \mathrm{g/L}$	1	<1	< 1	< 1
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}$ g/ $ m L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}$ g/ $ m L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu} { m g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.5J	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	sis Result	
Component Analyzed	Method	Unit	PQL	MW-20-3 04-02778-4	MW-20-4 04-02778-5	MW-20-5 04-02778-6	TB-3-5/3/0 04-02778-7
BICARBONATE	SM2320B	mg/L	2	188	183	141	_
CARBONATE	SM2320B		2	< 2	< 2	< 2	-
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	mg/L	10	335	193	179	-
РН	9040	pH unit	0.01	7.59	8.68	8.94	-
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	-
Dilution Factor		<u>.</u>		1	1	1	1
PERCHLORATE	314.0	$_{ m mg/L}$	0.004	< 0.004	< 0.004	< 0.004	-
Dilution Factor		٥,		5	2	2	1
CHLORIDE CL	300.0	mg/L	0.2	36.1	10.4	9.6	_
NITRATE AS N	300.0	mg/L	0.04	2.9	0.079J	0.087	-
SULFATE SO ₄ -	300.0	mg/L	0.5	27.5	9.2	3.7	-
Dilution Factor		G,		1	1	1	1
CHROMIUM	200.8	$_{\mu \mathrm{g}}/\mathrm{L}$	0.1	10.5	6.5	4.5	-
LEAD	200.8	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.12	< 0.12	< 0.12	< 0.12	_
Dilution Factor		μ0,		1	1	1	1
ARSENIC	200.9	$_{ m \mu g}/{ m L}$	5	2.5J	< 5	< 5	-
Dilution Factor		μ6/ –	_	1	1	1	1
CALCIUM	200.7	$_{\mu \mathrm{g}}/\mathrm{L}$	200	40,100	11,300	5,010	-
IRON	200.7	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	50	49.8J	905	56.6	_
MAGNESIUM	200.7	με/Σ με/Σ	100	14,600	3,060	1,200	_
POTASSIUM	200.7	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	400	2,330	1,030	1,500	_
SODIUM	200.7	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	2000	60,200	58,600	70,700	-
VOLATILE ORGANIC COMPOUNDS	20011	μ6/	2000	00,200	00,000	. 5,. 55	
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	με/ Σ μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	10	< 10	<10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu\mathrm{g}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2 524.2		0.5	< 0.5	₹0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2 524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5
1,2-DIBROMOETHANE (EDB)	524.2 524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE		$_{\mu \mathrm{g/L}}$					
1,2-DICHLOROBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIOHEORODENZENE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-2778 N Page: 3 of 4

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

	3.5 .3 .	TT !:	DO.		Analys	mm = /= /=	
Component Analyzed	Method	Unit	PQL	MW-20-3 04-02778-4	MW-20-4 04-02778-5	MW-20-5 04-02778-6	TB-3-5/3/04 04-02778-7
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENÈ	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	< 1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	ug/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	0.4J	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	ug/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director Applied P & Ch Laboratory

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-2778 Page: 4 of 4

13760 Magnolia Ave., Chino CA 91710Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW Mon 2Q04/MW-20/4-12812

For GEOFON, Inc.

APCL Service No: 04-2778

1. Sample Identification

The sample identifications are listed in the following table:

· ·	GEOFON, Inc. Sample ID	APCL Sample ID
	MW-20-5	04-02778-6
	MW-20-4	04-02778-5
	MW-20-3	04-02778-4
	MW-20-2	04-02778-3
	MW-20-1	04-02778-2
	EB-3-5/3/04	04-02778-1
	TB-3-5/3/04	04-02778-7

2. Analytical Methodology

Samples are analyzed by EPA methods

```
524.2 (Volatile Organic Compounds),
7196A (Chromium (VI)),
314.0 (Perchlorate, low level),
300.0 (Anions, by IC),
SM2320B (Carbonate),
9040B (pH),
160.1 (Solids, Total Dissolved (TDS)),
200.7 (Metals, by ICP),
200.9 (Arsenic, As, by GFAA),
200.8 (Chromium, Lead, by ICPMS),
```

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) SW6020:

Chromium in the amounts of 0.204 ug/L and 0.271 ug/L were detected in the two CCBs, exceeding the 0.1 ug/L reporting limit. However, Chromium was not detected in the associated Method Blank. The Chromium results in the field samples significantly exceeded the reporting limit.

Page: 12700

	GE	OF	=(N			C	HA	IN	-OF	'-C	CUS	то	DY	RI	ECC	RI)		-	_	LAB	ORATOR	Y COP	Y	
▮≣	GEO 1 N C O S 22632 GOLDEN DIAMOND BAR	4 SPHING	15 UH	., 5011	E 270	• FAX (909)	396-145	5			M	h.)-	2	. C)							0	993	7	_	
	ON's LAB COORDINATOR	LAB COOL						RDINATOR'S		,			LABOR	ATORY	SERVICE	ID :			ONTACT			MAIL REPOR					
	Cott Burner	40	9	<u> 390</u>	<u>ه ۲۷</u>	062	40	93	16	<u>140</u>	55						<u> </u>	NNN	ي د	par	<u>L</u>	<u>= ما</u>	OF	04			
TPROJ	ECT NAME: CGW Mon 2004	PROJECT	LOCATI	20	,			PRC	JECT N	11MBER 28/	7.	k	LABOR	450RY	PHONE 182	. 8	90	ATORY F	90	149	8	RECIPIENT	m F	and			
	ECT CONTACT	PROJECT	PHONE	NUMBER		T	PROJECT	FAX				T	LABOR	ATORY	ADDRÉS	s			Au			ADDRESS	۵				
7.	D. Jones	714				9		39	6	145	<u>ئ</u>		220	22 ^	<u>- M</u>	ag	Jour	<u>ie.</u>	Au	e .		22632 CITY, STATE	<u>Codd</u>	<u>en Sp</u>	<u>1 ديمت</u>	<u>u., 36</u>	<u>, 270</u>
	ECT ADDRESS	CITY. STA				_	CLIENT		ک ۱	.\-	 \/				ND ZIPC	ODE (I						Diam	AND ZIPO	TODE	C A	Qia	, <u>.</u> -
	OO DOU GLOVE ECT MANAGER	Pas	CACA MANAG	<u> </u>	<u> </u>	. N	<u>Llau</u>	JU -	<u>)(</u>	ΩD	Ļγ	\dashv	Ch	<u> </u>	۱ (<u>C</u> A	_		7	7	2/×	LIDOW	<u>ona</u>	IVIL	CA	71 70	<u>ی م</u>
I	ony Ford				201-	7662	90	9 39	/ <u>~</u> /	45	5			, e ^{cs}	15	$\langle \chi \rangle$					3.4)						
1	1 0					1000			9			\forall	- 6	alyses		% %	//	(િંગ્રે		(3)	/						
Item	Sample Identifier		•	Matrix	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	1º 11	He Pre	Selver *	10°	``\ GC`	evel/	<u>ج</u>	6		100 mg	Z. (\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_	_		(Comme	nts	<u> </u>	
1	MW-20-5		W	1	151.4	6734	Meyer HM02	20	11		Nau	<u>م</u>	X	Χ	X	X	X	7									
2	MW-50-4				1	D840	1						×	X	Х	X	X	X									
3	MW-20-3					5920		1					イ	\prec	X	X	X	X									
4	MW-20-2					1003		12					イ	\prec	く	X	1	Z			MS	/IZMI					
5	MW-20-7					1/05		70					X	X	X	×	4	人					· · · · ·				
6	=B-3 -5/3/	04				1023	4	6					4	+	7	1	سار	人					زعر	Q			
7	TB-3 -5/3/	<u>6 </u>	. 🗸		,		Hel	2	1	,	4		X									27	7	O			
8			-11																								
9										/			0	D	4		4										
10								_	1		 			0			ļ	1									
SAN	APLES COLLECTED BY: TM + 3	4 7 2	HM		COURIE	R AND AIR BII	L NUMBER	;			1		L		1			-			COOL	ER TEMPERATU	JRE UPON	RECEIPT			
	RELINQUISHED BY					R	ECEIVED B	Υ			DATE		TIM							SA		ONDITION UPO	N RECEIP	τ			
4	1.D. 6/000			-	74	44	M	-			1/5/6	79	122								10	<u> </u>			-		
1	Selfel Stung					proper of		· 			5/3/0	4	136	72						_ A	-pc						- It
1	/			1								1															

Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova // S Associate QA/QC Director Applied P & CH Laboratories

CADHS ELAP No: 1431 APCL Case Narrative: 04-2778 05/26/2004 Page: 22 7 0 1

Applied P & Ch Laboratory

13760 Magnolia Ave., Chino CA 91710
Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Receiving Checklist

APCL ServiceID: Client Name/Project: Con JPL
1. Sample Arrival
Date/Time Received 5/3/04/305 Date/Time Opened 5/3/04/305 By (name): 100 Date/Time Opened
Custody Transfer: Client Golden State UPS US Mail FedEx APCL Empl: R
2. Chain-of-Custody (CoC)
₩ith Samples? ☐ Faxed? ☐ Client has Copy? ☐ Signed, dated? By:
Project ID? Analyses Clear? Hold Samples? #on Hold # Received
☐ CoC/Docs Zip-Locked under lid? ☐ Compos.#: _ ☐ #Samples OK?
☐ Discrepancies? ☐ Client notified? ☐ Response (attach docs):
3. Shipping Container/Cooler
☐ Cooler Used? # of Cooled by: ☐ Ice ☐ Blue Ice ☐ Dry Ice ☐ None
Temp °C <u>'3.60</u>
(Cooler temperature measured from temp blank if present, otherwise measured from the cooler). Cooler Custody Seal? Absent Intact Tampered?
4. Sample Preservation
$\square pH < 2 \qquad \square pH > 12$
If Not, pH = Preserved by: Client APCL Third Party
5. Holding-time Requirements
☑pH 24hr ☐ BACT 6/24hr ☑Cr ^{V I} 24hr ☑NO₃ 48hr ☐ BOD 48hr
□ CI ₂ ASAP □ Turbidity 48hr □ DO ASAP □ Fe(II) ASAP
☐ HT Expired? ☐ Client notified?
6. Sample Container Condition
☐ Intact? ☐ Broken? ☐ Documented? Number:
Type:
Quantity OK? Leaking? Anomaly? Cape-tight? Air Bubbles? Anomaly?
Labels: Unique ID? Date/Time Preserved?
7. Turn Around Time
□ ROSH TAT: □ Std (7-10 days) □ Not Marked
8. Sample Matrix
☐ Drinking H ₂ O☐ Other Liq ☐ Soil ☐ Wipe ☐ Polymer ☐ Air ☐ Other:
☑Ground H ₂ O ☐ Sludge ☐ Filter ☐ Oil/Petro ☐ Paint ☐ W. Water ☐ Extract ☐ Unknown
9. Pre-Login Check List Completed & OK?
ALL OK? (if not, attach docs) Client Contact? (Name:)Date/Time:
Received/Checked by: Kemy Man Printed: 3 May 2004 7:24 a.m.
$\stackrel{\smile}{\smile}$

*HT: Samples must be analyzed for results to reflect total concentrations. Results generated outside required of holding times are considered minimal values and may be used to define waste as hazardous but not as non-hazardous.

DocumentFile: [neal.texfiles]amprel.tex.

Applied P & Ch Laboratory

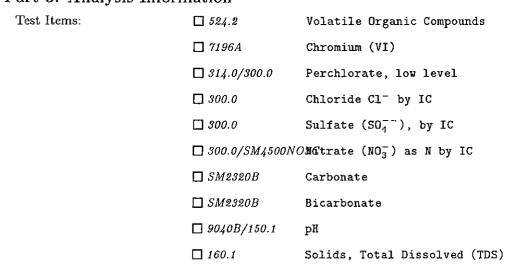
13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Login: Check List

 $04\text{-}02778 \ (0470_\ 225) \ (2202777_\ 225)$

05/03/04

Part 1: General Information


- ar c - c	onorun anni		
☐ Company	Information	Name:	GEOFON, Inc.
		Address:	22632 Golden Spring Dr Ste 270 ,Diamond Bar ,CA 91765
☐ Project In	nformation	Project Description:	JPL GW Mon 2Q04
			MW-20
		Project #:	4-12812
☐ Billing In	formation	P.O. #:	
		Bill Address:	22632 Golden Spring Dr Ste 270 ,Diamond Bar ,CA 91765
		Lab Project ID:	
		Client Database #:	3
☐ Receiving	Information	Who Received Sample?	Kenny Chan
		Receiving Date/Time:	05/03/04 1305
		COC No.	0095
☐ Shipping	Information	Shipping Company	APCL pick up
		Packing Information:	Cooler/Ice Chester
		Cooler Temperature:	3.6 ° C
☐ Container	Information	Container Provider:	Client
☐ Sampling	Information	Sampling Person:	TM/JJ/MM
		Sampling Company:	Client
☐ Turn-Aro	und-Time Opti	on:	Normal
☐ QC Option	on:		NEESA C
☐ Disposal	Option:		Not specify

Page: 1 2703

Part 2: Sample Information

Seq.	Sample ID (on COC)	Sample Sub-ID	APCL Sample ID	Matrix		Preser- vative	Vol, ml Am. g	# of Replica	Condition G, L, B		Hold ?	Composite Group	TAT	
1	MW-20-5	VOC	04-02778-6-α		v	С	40	3	G	050304	N	0	9	
	MW-20-5	PH/TDS	04-02778-6-β	W	P		500	1	G	050304	N	0	9	
	MW-20-5	300	$04-02778-6-\gamma$	W	P		500	1	G	050304	N	0	9	
	MW-20-5	Metal	04-02778-6- δ	W	P	N	500	1	G	050304	N	0	9	
2	MW-20-4>	VOC	04-02778-5-α	W	V	C	40	3	G	050304	N	0	9	
	MW-20-4	PH/TDS	04-02778-5- β	W	P		500	1	G	050304	N	0	9	
	MW-20-4	300	$04-02778-5-\gamma$	W	Р		500	1	G	050304	N	0	9	
	MW-20-4	Metal	04-02778-5- δ	W	P	N	500	1	G	050304	N	0	9	
3	MW-20-3	VOC	04-02778-4-α	W	V	C	40	3	G	050304	N	0	9	
	MW-20-3	PH/TDS	04-02778-4- β	W	P		500	1	G	050304	N	0	9	
	MW-20-3	300	04-02778-4-γ	w	P		500	1	G	050304	N	0	9	
	MW-20-3	Metal	$04\text{-}02778\text{-}4\text{-}\delta$	W	P	N	500	1	G	050304	N	0	9	
4	MW-20-2 ,	VOC	04-02778(3-)α	~ W	v	С	40	6	G	050304	N	0	9	
	MW-20-2	PH/TDS	04-02778-3- β	W	P		500	2	G	050304	N	0	9	
	MW-20-2	300	$04\text{-}02778\text{-}3\text{-}\gamma$	W	P		500	2	G	050304	N	0	9	
	MW-20-2	Metal	04-02778-3- δ	W	P	N	500	2	G	050304	N	0	9	
5	MW-20-1	VOC	04-02778-2-α	W	V	C	40	3	G	050304	N	0	9	
	MW-20-1	PH/TDS	04-02778-2- β	W	P		500	1	G	050304	N	0	9	
	MW-20-1	300	04-02778-2- γ	W	P		500	1	G	050304	N	0	9	
	MW-20-1	Metal	04-02778-2- δ	W	P	N	500	1	G	050304	N	0	9	
3	EB-3-5/3/04	voc	04-02778-1- α	W	V	C	40	3	G	050304	N	0	9	
	EB-3-5/3/04	•	04-02778-1- $oldsymbol{eta}$	W	P		500	1	G	050304	N	0	9	
	EB-3-5/3/04	300	04-02778-1- γ	W	P		500	1	G	050304	N	0	9	
	EB-3-5/3/04	Metal	04-02778-1- δ	W	P	N	500	1	G	050304	N	0	9	
7	TB-3-5/3/04	VOC	04-02778-7	W	V	C	40	2	G	050304	N	0	9	

Part 3: Analysis Information

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710Tel. (909) 590-1828 Fax (909) 590-1498

May 28, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-2793 and your project: 4-12812 JPL GW Mon 2Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully sybmitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Submitted to: GEOFON, Inc. Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

Service ID #: 801-042793 Collected by: TM/JJ/MM Collected on: 05/04/04 Received: 05/04/04 Extracted: N/A Tested: 05/04-10/04

Reported: 05/12/04

Sample Description: Water from MW-18

Project Description: 4-12812 JPL GW Mon 2Q04

Analysis of Water Samples

				Analysis Result					
Component Analyzed	Method	Unit	PQL	EB-4-5/4/04 04-02793-1	MW-18-1 04-02793-2	MW-18-2 04-02793-3			
BICARBONATE	SM2320B	mg/L	2	< 2	140	164			
CARBONATE	SM2320B	mg-CaCO3/L	2	< 2	< 2	< 2			
PH	9040B	pH unit	0.01	6.25	7.10	7.50			
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	${\sf mg/L}$	10	< 10	701	265			
CHROMIUM (VI)	7196	${ m mg/L}$	0.01	< 0.01	< 0.01	< 0.01			
Dilution Factor				1.25	2	2			
CHLORIDE CL	300.0	$_{ m mg/L}$	0.2	0.17J	14.4	13.9			
NITRATE AS N	300.0	${\sf mg/L}$	0.04	0.12	1.4	0.89			
SULFATE SO ₄	300.0	${\sf mg/L}$	0.5	< 0.63	41.0	35.8			
Dilution Factor				1	1	1			
PERCHLORATE	314.0	${\sf mg/L}$	0.004	< 0.004	< 0.004	< 0.004			
Dilution Factor				1	1	1			
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	1.7	8.4	9.3			
LEAD	200.8	$_{\mu \mathrm{g}}/\mathrm{L}$	0.12	0.081J	< 0.12	< 0.12			
Dilution Factor		•		1	1	1			
ARSENIC	200.9	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5			
Dilution Factor		•		1	1	1			
CALCIUM	200.7	$_{\mu}\mathrm{g/L}$	200	< 200	46,900	55,600			
IRON	200.7	$_{\mu \mathrm{g/L}}$	50	< 50	328	265			
MAGNESIUM	200.7	$_{\mu \mathrm{g/L}}$	100	< 100	15,800	18,600			
POTASSIUM	200.7	$_{\mu}\mathrm{g/L}$	400	109J	2,280	2,470			
SODIUM	200.7	$_{\mu \mathrm{g/L}}$	2000	415J	15,900	20,300			
VOLATILE ORGANIC COMPOUNDS									
Dilution Factor				1	1	1			
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMODICHLOROMETHANE	524.2	$_{\mu}{ m g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
N-BUTYLBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5			
SEC-BUTYLBENZENE	524.2	$_{\mu}$ g/ $ m L$	0.5	< 0.5	< 0.5	< 0.5			
TERT-BUTYLBENZENE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5			
2-BUTANONE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	10	< 10	< 10	< 10			
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROBENZENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5			
CHLORODIBROMOMETHANE	524.2	$_{\mu}^{ m g/L}$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROFORM	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5			

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 Cl-0470 D003 № 04-2793 Q Page: 1 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	EB-4-5/4/04 04-02793-1	MW-18-1 04-02793-2	MW-18-2 04-02793-3
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENÈ	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	< 1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu \mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$\mu g/L$	0.5	0.4J	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-2793 h Page: 2 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	MW-18-3 04-02793-4	Analys MW-18-4 04-02793-5	sis Result MW-18-5 04-02793-6	TB-4-5/4/0-
BICARBONATE	SM2320B	mg/L	2	219	157	123	-
CARBONATE	SM2320B	mg-CaCO ₃ /L	2	< 2	< 2	< 2	-
PH	9040B	pH unit	0.01	7.66	7.82	8.70	-
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	$_{ m mg/L}$	10	328	245	179	-
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	-
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	mg/L	0.004	0.0027J	0.0081	< 0.004	-
Dilution Factor				4	2	2	1
CHLORIDE CL	300.0	mg/L	0.2	18.8	10.4	10.8	-
NITRATE AS N	300.0	mg/L	0.04	1.2	1.1	< 0.08	-
SULFATE SO4"	300.0	${\sf mg/L}$	0.5	40.1	22.7	4.8	-
Dilution Factor				1	1	1	1
CHROMIUM	200.8	$_{\mu \mathrm{g}}/\mathrm{L}$	0.1	15.5	6.9	6.1	-
LEAD	200.8	$_{\mu}\mathrm{g/L}$	0.12	< 0.12	< 0.12	< 0.12	-
Dilution Factor				1	1	1	1
ARSENIC	200.9	$_{\mu}\mathrm{g}/\mathrm{L}$	5	< 5	< 5	< 5	-
Dilution Factor				1	1	1	1
CALCIUM	200.7	$_{\mu}$ g/L	200	66,700	38,200	8,550	-
IRON	200.7	$_{\mu}\mathrm{g/L}$	50	105	446	123	-
MAGNESIUM	200.7	$_{\mu}{ m g}/{ m L}$	100	20,000	13,200	4,520	-
POTASSIUM	200.7	$_{\mu}\mathrm{g}/\mathrm{L}$	400	2,840	1,800	1,640	-
SODIUM	200.7	$_{\mu \mathrm{g/L}}$	2000	23,500	27,900	55,100	-
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{ m \mu g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}$ g/ $_{-}^{ m L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	<10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	2.1	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu\mathrm{g}/\mathrm{L}}$	0.5	0.9	0.6	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu g/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-2793 D Page: 3 of 4

Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	MW-18-3 04-02793-4	Analys MW-18-4 04-02793-5	sis Result MW-18-5 04-02793-6	TB-4-5/4/04 04-02793-7
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/\tilde{L}$	1	<1	<1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	<10	< 10	<10	<10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	0.6	< 0.5	< 0.5
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/\tilde{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	0.4J	0.8	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

 $N.D.\colon Not\ Detected\ or\ less\ than\ the\ practical\ quantitation\ limit.$

"-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & Ch Laboratory

Page: 4 of 4

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-2793 は

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW Mon 2Q04/MW-18/4-12812

For GEOFON, Inc.

APCL Service No: 04-2793

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID	
 MW-18-5	04-02793-6	
MW-18-4	04-02793-5	
MW-18-3	04-02793-4	
MW-18-2	04-02793-3	
MW-18-1	04-02793-2	
EB-4-5/4/04	04-02793-1	
TB-4-5/4/04	04-02793-7	

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)), 314.0 (Perchlorate, low level), 300.0 (Anions, by IC), SM2320B (Carbonate), 9040B (pH), 160.1 (Solids, Total Dissolved (TDS)), 200.7 (Metals, by ICP), 200.9 (Arsenic, As, by GFAA), 200.8 (Chromium, Lead by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

None

Page: 12900

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

Page: 22901

GEC)FO	N			C]	HAI	V-O	F-(CUS	то	DΥ	RF	CCC	RI)				LA	BORATO	RY COP	Y	
ł N C D R 22632 GOLDEN S DIAMOND BAR, 6	SPRINGS DR., SL	JITE 270	FAX (909)	396-1455	5	1	14)-	18	ı									۲	009	6		
GEOFON's LAB COORDINATOR	LAB COORDINATOR'S I	PHONE	,	LAB COOR	DINATOR'S F	AX	· - · · ·		LABOR	ATORY S	SERVICE	10			ONTACT			l _		PANY NAME)			
Scott Buhmu	<u>409 39</u>	16 70	062	90	<u> 25 とり</u>	4619	<u>/රර</u>					_	<u> </u>	NN	10	,ha	<u>n</u>	650	OFC) N			
PROJECT NAME: JPC COLD Man 2004	909 30 PROJECT LOCATION MW-18)9 3° PROF 4-	1281	<u>2</u>]	14BOR	atory 1 590	182	8	909	59	ð: 0 1	498	}	RECIPIENT TONU ADDRESS	1 F	nd			
PROJECT CONTACT	PROJECT PHONE NUMB	BER		PROJECT F	AX				1.000	(TODY	DODEE							ADDRESS	3	٠١ ،	, ·	١ .	
J. D. Jones PROJECT ADDRESS	714 920	872°	7	CLIENT	390	0 140	<u> </u>		19.)60 STATE AL	ND.ZIBC	GOM	YO LU	<u>း ငု</u>	we.			22632	E AND ZII	olden S	Spring	<u> </u>	<u> </u>
4800 Oak Grove b.	CITY STATE AND ZIPC	C.A		Klan	U- S	7W	ΓV		C\	μį	D ,	C.	4				_	Diam	ممط	Bar	CA.	9176	5
PROJECT MANAGER	PROJECT MANAGER'S	-	- 1	PROJECT N								Ζ,	7	7	/s /	₹ \$\$	15				JJ.		
Tony Fad	PHONE 909 8	<u> 396 7</u>	662	409	390	g 145	<u> </u>		ļ	145e5		<u>کنی</u>	X,	(s)	10	25	"	//					
Sample Identifier		/			"Cyed	Contr	Jevel A		M	/ \v					\\\ \!\	//	/,						
Sample Identifier	Mar	200	& _ <\(i\)	74.05	*\^*Q	~ G		N.A.	1			F /8	13.	2/15		/				Comme	ents		
1 MW-18-6	W	514 lov	0723	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	皿	No		X	X	X	Χ	χ	X									
2 MW-18-4			0817		12	1		1	X	+	4	7	4	1			ZY	I MSD					
3 MW-18-3			1910		2				X	X	X	X	X	X									
4 MW-18-2			D943						X	X	X	X	X	X									
5 MW-18-2			1023						X	1	X	X	X	7				ا بد.	OA (2			
6 =B-4 -5/4/04			1007	4	J				X	X	X	4	+	1			-6		J				-
7 TB-4 -5/4/04		4		HU	2	47	١,	J.	X		•												
8				7																			
9						9.1	7.7	70	225 04							_					_	_	_
	 		 				+2	<u>. T</u>	7			 -				_							
10		<u> </u>														_							
	Z+MW	COURLER	AND AIR BIL	L NUMBER:			F.		T	<u>е Т</u>								ER TEMPERATI				<u></u>	
RELINQUISHED BY		esta		VUT				тя 1 <i>СЧ</i>	1/2							3A/	<u> игыс 3 (</u>	- AND MOR UPL	AT AELEI				
Adam harro			~	~ ~ v ^ _					134														
							,	, -															

Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager

13760 Magnolia Ave., Chino CA 91710
Tel: (909) 590-1828 Fax: (909) 590-1498

DocumentFile: [neal.texfiles]smprcl.tex.

Sample Receiving Checklist

	1. Sample Arrival
	Date/Time Received 5 404 1300 Date/Time Opened 5 404 1800 By (name): Jason N.
	Custody Transfer: 🗌 Client 🔲 Golden State 🔲 UPS 🔲 US Mail 🗋 FedEx 🔯 APCL Empl: 🖊
	2. Chain-of-Custody (CoC)
	With Samples? ☐ Faxed? ☐ Project ID? ☐ Analyses Clear? ☐ Hold Samples? # on Hold# Received
	3. Shipping Container/Cooler
	Cooler Used? # of Cooled by:
	(Cooler temperature measured from temp blank if present, otherwise measured from the cooler). Cooler Custody Seal?
	4. Sample Preservation
	□ pH <2 □ pH >12 If Not, pH = Preserved by: □ Client □ APCL □ Third Party
	,
	5. Holding-time Requirements
	· · · · · · · · · · · · · · · · · · ·
	5. Holding-time Requirements PH 24hr BACT 6/24hr Cr ^{VI} 24hr Cl ₂ ASAP Turbidity 48hr DO ASAP Fe(II) ASAP HT Expired?
	5. Holding-time Requirements Ph 24hr BACT 6/24hr Cr ^{VI} 24hr Ph 24hr BOD 48hr Cl ₂ ASAP Turbidity 48hr DO ASAP Fe(II) ASAP
	5. Holding-time Requirements PH 24hr
	5. Holding-time Requirements PH 24hr
	5. Holding-time Requirements PH 24hr
•	5. Holding-time Requirements PH 24hr
•	5. Holding-time Requirements PH 24hr
,	5. Holding-time Requirements PH 24hr
,	5. Holding-time Requirements PH 24hr
,	5. Holding-time Requirements PH 24hr
	5. Holding-time Requirements PH 24hr
	5. Holding-time Requirements PH 24hr

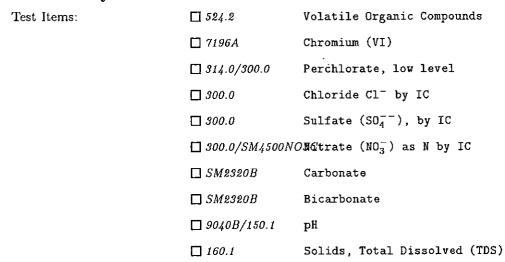
13760 Magnolia Ave. Chino CA 91710Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Login: Check List

 $04\text{-}02793 \ (0470_-\ 226) \ (2202777_-\ 226)$

05/04/04

Part 1: General Information


Company Information	Name:	GEOFON, Inc.
	Address:	22632 Golden Spring Dr Ste 270 ,Diamond Bar ,CA 91765
Project Information	Project Description:	JPL GW Mon 2Q04
		MW-18
	Project #:	4-12812
Billing Information	P.O. #:	
	Bill Address:	22632 Golden Spring Dr Ste 270 ,Diamond Bar ,CA 91765
	Lab Project ID:	
	Client Database #:	3
Receiving Information	Who Received Sample?	Jason Nario
	Receiving Date/Time:	05/04/04 1300
	COC No.	0096
Shipping Information	Shipping Company	APCL pick up
	Packing Information:	Cooler/Ice Chester
	Cooler Temperature:	3.5 ° C
Container Information	Container Provider:	Client
Sampling Information	Sampling Person:	TM/JJ/MM
	Sampling Company:	Client
Turn-Around-Time Opt	ion:	Normal
QC Option:		NEESA C
Disposal Option:		Not specify:

Page: 1

Part 2: Sample Information

Seq.	Sample ID	Sample	APCL		Cont-	Preser-	Vol, ml	# of	Condition	Collected		Composite	TAT	
#	(on COC)	Sub-ID	Sample ID	Matrix	tainer	vative	Am. g	Replica	G, L, B	mmddyy	Hold ?	Group	Days	i
1	MW-18-5/	VOC	04-02793-6-α	W	V	С	40	3	G	050404	N	0	9	
	MW-18-5	PH/TDS	04-02793-6- β	W	P		500	1	G	050404	N	0	9	
	MW-18-5	300	04-02793-6- γ	W	P		500	1	G	050404	N	0	9	
	MW-18-5	METAL	$04-02793-6-\delta$	W	P	N	500	1	G	050404	N	0	9	
2	MW-18-4	VOC	04-02793(5-)x	∠ W	V	C	40	6	G	050404	N	0	9	
	MW-18-4	PH/TDS	04-02793-5- <i>β</i>	W	P		500	2	G	050404	N	0	9	
	MW-18-4	300	04-02793-5-γ	W	P		500	2	G	050404	N	0	9	
	MW-18-4	METAL	$04-02793-5-\delta$	W	P	N	500	2	G	050404	N	0	9	
3	MW-18-3	VOC	04-02793-4-α	W	V	С	40	3	G	050404	N	0	9	
	MW-18-3	PH/TDS	04-02793-4- β	W	P		500	1	G	050404	N	0	9	
	MW-18-3	300	04-02793-4- γ	W	P		500	1	G	050404	N	0	9	
	MW-18-3	METAL	$04\text{-}02793\text{-}4\text{-}\delta$	W	P	N	500	1	G	050404	N	0	9	
4	MW-18-2	voc	04-02793-3-α	W	V	С	40	3	G	050404	N	0	9	
	MW-18-2 /	PH/TDS	04-02793-3- <i>β</i>	W	P		500	1	G	050404	N	0	9	
	MW-18-2	300	$04-02793-3-\gamma$	W	P		500	1	G	050404	N	0	9	
	MW-18-2	METAL	04-02793-3- δ	W	P	N	500	1	G	050404	N	0	9	
5	MW-18-1	VOC	04-02793-2-α	W	٧	C	40	3	G	050404	N	0	9	
	MW-18-1	PH/TDS	04-02793-2- β	W	P		500	1	G	050404	N	0	9	
	MW-18-1	300	04-02793-2- γ	W	P		500	1	G	050404	N	0	9	
	MW-18-1	METAL	$04\text{-}02793\text{-}2\text{-}\delta$	W	P	N	500	1	G	050404	N	0	9	
6	EB-4-5/4/04	voc	04-02793-1- α	W	v	C	40	3	G	050404	N	0	9	
	EB-4-5/4/04	PH/TDS	04-02793-1- eta	W	P		500	1	G	050404	N	0	9	
	EB-4-5/4/04	300	04-02793-1- γ	W	P		500	1	G	050404	N	0	9	
	EB-4-5/4/04	METAL	$04\text{-}02793\text{-}1\text{-}\delta$	W	P	N	500	1	G	050404	N	0	9	
7	TB-4-5/4/04	√VOC	04-02793-7	W	V	C	40	2	G	050404	N	0	9	

Part 3: Analysis Information

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710Tel. (909) 590-1828 Fax (909) 590-1498

May 28, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-2809 and your project: 4-12812 JPL GW Mon 2Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Submitted to: GEOFON, Inc. Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

Service ID #: 801-042809 Collected by: TM/JJ/MM Collected on: 05/05/04

Received: 05/05/04 Extracted: 05/06/04 Tested: 05/05-11/04 Reported: 05/17/04

Sample Description: Water from MW-17

Project Description: 4-12812 JPL GW Mon 2Q04

Analysis of Water Samples

The second secon					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	EB-5-5/5/04 04-02809-1	MW-17-1 04-02809-2	MW-17-2 04-02809-3
BICARBONATE	SM2320B	mg/L	2	< 2	157	147
CARBONATE	SM2320B	$mg-CaCO_3/L$	2	< 2	< 2	< 2
РН	9040B	pH unit	0.01	6.32	7.18	7.61
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	${\sf mg/L}$	10	5.0J	242	427
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor		_,		1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	12.5
Dilution Factor		,		1.25	2	8
CHLORIDE CL	300.0	${ m mg/L}$	0.2	0.15J	10	46.9
NITRATE AS N	300.0	${ m mg/L}$	0.04	0.066	0.49	5.4
SULFATE SO ₄	300.0	${ m mg/L}$	0.5	< 0.63	31.4	62.9
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	0.19	7.3	7.6
LEAD	200.8	$_{\mu\mathrm{g}}/\mathrm{L}$	0.12	0.023J	< 0.12	< 0.12
Dilution Factor		, =-		1	1	1
ARSENIC	200.9	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
Dilution Factor		,		1	1	1
CALCIUM	200.7	$_{\mu}\mathrm{g/L}$	200	< 200	47,600	69,800
IRON	200.7	$_{\mu\mathrm{g}}/\mathrm{L}$	50	< 50	116	153
MAGNESIUM	200.7	$_{\mu \mathrm{g}/\mathrm{L}}$	100	33.0J	15,800	27,900
POTASSIUM	200.7	$_{\mu\mathrm{g}}/\mathrm{L}$	400	125J	2,090	2,740
SODIUM	200.7	$_{\mu}\mathrm{g/L}$	2000	275J	14,200	18,400
VOLATILE ORGANIC COMPOUNDS		,				
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$\mu g/L$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524. 2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	0.5	< 0.5
- CALLO AUGA O AUGA		μοι υ	0.0		0.0	

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

Cl-0470 D003 № 04-2809 þ Page: 1 of 5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	EB-5-5/5/04 04-02809-1	MW-17-1 04-02809-2	MW-17-2 04-02809-3
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}^{\mu g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μ6/ λ μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}^{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	1	<1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	<10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	2.0	< 0.5
TRICHLOROETHERE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	με/ L μg/L	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	μΒ/ L μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2 524.2		0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2 524.2	μg/L σ/L	0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
M/P-XYLENE	524.2 524.2	μg/L α/۲	0.5	< 0.5 < 0.5	< 0.5 < 0.5	
MIL-VIPDIAD	024.2	$_{\mu}\mathrm{g/L}$	U.O	< ∪.5	ζ υ.δ	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-2809 h Page: 2 of 5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	MW-17-3 04-02809-4	MW-17-4	sis Result MW-17-5 04-02809-6	TB-5-5/5/04 04-02809-7
BICARBONATE	SM2320B	mg/L	2	164	130	114	<u> </u>
CARBONATE	SM2320B	mg-CaCO ₃ /L	2	< 2	< 2	< 2	-
PH	9040B	pH unit	0.01	7.70	8.05	8.05	-
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	mg/L	10	304	198	225	-
CHROMIUM (VI)	7196	${ m mg/L}$	0.01	< 0.01	< 0.01	< 0.01	-
Dilution Factor				2	1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 8	< 4	< 4	-
Dilution Factor				5	2	2	1
CHLORIDE CL	300.0	mg/L	0.2	37.6	12.3	10.9	-
NITRATE AS N	300.0	${ m mg/L}$	0.04	3.5	0.12	0.077J	-
SULFATE SO4	300.0	${\sf mg/L}$	0.5	44.5	15.2	18.2	-
Dilution Factor				1	1	1.25	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	8.1	5.6	8.3	-
LEAD	200.8	$_{\mu \mathrm{g/L}}$	0.12	< 0.12	0.14	73.3	-
Dilution Factor				1	1	1	1
ARSENIC	200.9	$_{\mu}{ m g/L}$	5	2.5J	3.9J	12.0	-
Dilution Factor				1	I	1	1
CALCIUM	200.7	$_{\mu \mathrm{g/L}}$	200	46,000	20,700	30,400	-
IRON	200.7	$_{\mu \mathrm{g/L}}$	50	786	138	18,100	-
MAGNESIUM	200.7	$\mu \mathrm{g/L}$	100	22,100	6,590	9,890	-
POTASSIUM	200.7	μg/L	400	2,030	1,540	3,150	-
SODIUM	200.7	$_{\mu \mathrm{g/L}}$	2000	21,100	34,600	49,000	-
VOLATILE ORGANIC COMPOUNDS				_	_	_	_
Dilution Factor	7040	/T	0.5	1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE BROMOCHI OROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE BROMODICHLOROMETHANE	$524.2 \\ 524.2$	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2 524.2	μg/L	$0.5 \\ 0.5$	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	μg/L μg/L	0.5	< 0.5		< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}^{\mu}$ g/L	0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
2-BUTANONE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	10	< 10	< 10.3	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	4.7	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	1.9	0.4J	< 0.5	< 0.5
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE ` ´	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}^{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu \mathrm{g}}^{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu \mathrm{g}}^{\mathrm{G}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu_{\rm g}^{\rm G}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 Cl-0470 D003 ₹ 04-2809 b Page: 3 of 5

13760 Magnolia Ave. Chino CA 91710 TeI: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	sis Result	
Component Analyzed	Method	Unit	PQL	MW-17-3	MW-17-4	MW-17-5	TB-5-5/5/04
				04-02809-4	04-02809-5	04-02809-6	04-02809-7
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	<10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu} g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu} g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu} g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	2.1	1.6	0.7	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-2809 t Page: 4 of 5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	${f Method}$	Unit	PQL	Analysis Result MW-17-4 04-02809-5
Dilution Factor				1
1,4-DIOXANE (P-DIOXANE)	8270-SIM	$_{\mu}\mathrm{g/L}$	1	<1

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-2809 ឯ Page: 5 of 5

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW Mon 2Q04/MW-17/4-12812

For GEOFON, Inc.

APCL Service No: 04-2809

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID	
 MW-17-5	04-02809-6	
MW-17-4	04-02809-5	
MW-17-3	04-02809-4	
MW-17-2	04-02809-3	
MW-17-1	04-02809-2	
EB-5-5/5/04	04-02809-1	
TB-5-5/5/04	04-02809-7	

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)), 314.0 (Perchlorate, low level), 300.0 (Anions, by IC), SM2320B (Carbonate), 9040B (pH), 160.1 (Solids, Total Dissolved (TDS)), 200.7 (Metals, by ICP), 200.9 (Arsenic, As, by GFAA), 8270-SIM (1,4-Dioxane), 200.8 (Chromium, Lead by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

Faxed explanation regarding NDMA being resampled.

6. Anomaly

(1) COC/NDMA analyses:

Due to incorrect sampling containers, NDMA analysis was not performed in this SDG. Client was notified.

CADHS ELAP No: 1431

APCL Case Narrative: 04-2809 05/27/2004

(2) 200.7:

Iron recoveries in the MS/MSD spiked on the sample MW-17-5 were outside of control limits, due to high level of Iron in the parent sample.

(3) 200.8:

Chromium in the amounts ranging from 0.126 ug/L through 0.451 ug/L was detected in the CCBs associated with the samples. The values were higher than 0.1 ug/L reporting limit. Chromium in the amount of 0.11 ug/L was detected in the associated Method Blank. Chromium was detected in the most of the field samples in the amounts significantly exceeding the reporting limit. The concentration in the sample EB-5-5/5/04 was 0.19 ug/L.

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova V S Associate QA/QC Director Applied P & CH Laboratories

GEOFON

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

MW-17

0097

22632 GOLDEI DIAMOND BAF	N SPRING	S DR., SU	JITE 270	• FAX (90 <i>9</i>)	396-145	5	141	N	- /	/											<i>70 .</i>			
GEOFON's LAB COORDINATOR		RDINATOR'S		1751 (555)	LAB COOR	DINATOR'S F				LABOR	ATORY :	SERVICE				ONTACT			MAIL REPO			E)		
Scott Burner	909	396	766	2	90	939	7614	<u>50</u>	5					Ker	บน	<u></u>	∞			OF				
PROJECT NAME:		LOCATION				PROJI	- /28	12	}	409	atory i ~G τ.	PHONE	28		ATORT	AX 59 0	300 149	78 l	RECIPIENT ADDRESS	NAME TO	d			
JPC COM MOD 2004 PROJECT CONTACT	PROJECT	PHONE NUM	BER	· T	PROJECT F	AX				LABOR	ATORY .	ADDRESS	5			_								
J. D. Jones	714	920	<u>872'</u>	7	909	<u> 394</u>	145	<u>ර</u>		137	<u>ري) ا</u>	<u> </u>	<u> 1aç</u>	300	<u>lia</u>	<u>A</u>	x.		22632	. Gol	ادر کو	<u> دیمره</u> ا	<u>v., S</u>	<u>b. 270</u>
PROJECT ADDRESS	1 1	ATE AND ZIP			CLIENT		11/2	1/	ŀ	100	TATE A	ND ZIPCO	DDE	3 N	_ (219	in		CITY, STAT	E AND ZIF	RODE	CI	91	765
4800 Call Grove Dr.	125	<u>sader</u>	<u>va. C</u>	7	PROJECT	Y~ S		. <u>v</u>		TUC	XXC	16 CX		<u> </u>	'}) -	''' '	$\frac{\mathcal{Y}}{\mathcal{Z}}$		S. S. Down	<u>ova</u>	<u> </u>	<u> </u>		<u> </u>
PROJECT MANAGER	PHONE	909	39 /_	7662	90	9 390		5	ļ		جھے	X	A.	86.5°	/									
Tony Ford	J			1000	, , ,	1 0 1 / A				~0	alyses		$\tilde{\mathcal{S}}$	*/	//		64							
Sample Identifier	; r	413	irit O	ole (in	ile Pr	served * o	Cour	Yew.	7.P.	\\ \begin{align*} \be			100 A	()				/	`		Comn	nents		
1 MW-17-5		W	3/5/0	0734	HCI	14	皿		(100)	Χ	X	X		X	,	X		<u> </u>	[MSD]					
2 MW-17-4		W	17	0900		8			}	Х	X	X	メ	X	人	X	-		·· ···					
3 MW-17-3	-	1	+	1008		76			1	X	X	X		X	•	X	-				_			
	•	├-{	├ ├-	1000			-	+			\vdash	1	<u> </u>	-		\vdash			70	U	4			
4 MW-17-2		<u> </u>		1050				1	\perp	X	X.	X	<u> </u>	X		X			<u> </u>	V				
5 MU-17-Z		{ }		1/29						X	X	X		X		X								
6 =B-5-5/5/	07			1033	4	A				X	X	X		X		X								
7 TB-5 - 5/5/1	٧,	1	4		Hel	2	1	Τ,	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	X														
8		<u> </u>						1	7.7			1							-	_				
0		├	<u>-</u>			-7 -	+	╫		 	 	+	\vdash	┼一	\vdash									- 41
9		1				<i>y</i>	9	1	De	4	ح کا	0			<u> </u>	<u> </u>								
10					Z				5/5	7.	4	ı												
SAMPLES COLLECTED BY: TM +	+77	711	COURI	R AND AIR BI	LL NUMBER	 ;	<u></u>						1						R TEMPERA					
RELINQUISHED B			4,		RECEIVED 8				DATE ,	110	ME						SAN	MPLE'S CO	ONDITION UP	ON RECE	IPT			
G/. D. C/ns			42.1	refil			<u>></u> _>		07	1/2	// 5				-									
5 Wuhlato			+ 4	// FF _				2-6	/~/ -	 1 7 	''4													1
!			+								-													
Di	istributi	on: Wh	ite - Lat	oratory (To be r	eturned	with Ar	alyt	ical R	eport); G	olden	rod -	Proje	ct Fi	le; Y	ellow	- Pro	ject Da	ta Mar	nager			

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Receiving Checklist

APCL ServiceID. 2809 Client Name/Project: Colon JPL							
1. Sample Arrival Date/Time Received 5/5/04/13/0 Date/Time Opened 5/5/04/13/0 By (name): Nenny Cham Custody Transfer: Client Golden State UPS US Mail FedEx APCL Empl: 2004/18.							
2. Chain-of-Custody (CoC)							
With Samples?							
3. Shipping Container/Cooler							
Cooler Used? # of Cooled by: Ice Blue Ice Dry Ice None None Temp °C Sign Cooled by: Coo							
(Cooler temperature measured from temp blank if present, otherwise measured from the cooler). Cooler Custody Seal? \square Absent \square Intact \square Tampered?							
4. Sample Preservation							
☐ pH <2 ☐ pH >12 If Not, pH = Preserved by: ☐ Client ☐ APCL ☐ Third Party							
5. Holding-time Requirements							
\Box pH 24hr \Box BACT 6/24hr \Box Cr VI 24hr \Box NO $_3^-$ 48hr \Box BOD 48hr \Box CI $_2$ ASAP \Box Turbidity 48hr \Box DO ASAP \Box Fe(II) ASAP \Box HT Expired? \Box Client notified?							
6. Sample Container Condition							
☐ Intact? ☐ Broken? ☐ Documented? Number: Type: ☐ plastic ☐ glass ☐ Tube: brass/SS ☐ Tedlar Bag ☐ Quantity OK? ☐ Leaking? ☐ Anomaly? ☐ Caps tight? ☐ Air Bubbles? ☐ Anomaly? Labels: ☐ Unique ID? ☐ Date/Time ☐ Preserved?							
7. Turn Around Time							
□ RUSH TAT: □ Std (7-10 days) □ Not Marked							
8. Sample Matrix							
☐ Drinking H ₂ O☐ Other Liq ☐ Soil ☐ Wipe ☐ Polymer ☐ Air ☐ Other: ☐ Ground H ₂ O ☐ Sludge ☐ Filter ☐ Oil/Petro ☐ Paint ☐ W. Water ☐ Extract ☐ Unknown							
9. Pre-Login Check List Completed & OK?							
ALL OK? (if not, attach docs)							
Received/Checked by: Mem Printed: 5 May 2004 7:32 a.m.							
Samples must be analyzed for results to reflect total concentrations. Results generated outside required of holding times are considered minimal							

*HT: S values and may be used to define waste as hazardous but not as non-hazardous.

DocumentFile: [neal.texfiles]smprcl.tex.

Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Telephone Log Sheet

Service I.D. #: 2809 Date: 5564	
Initiated Call: Hemy Chan	-
Person Called: J. Robymon	
Company Name/Phone#: George	
Subject: NOMA	
Notes:	
Due to miscommunication between Kenny and Ge	of c
for didn't receive the convect bottle for NDMA sam	pli
N-17-4 'S NDMA will be resample with new bottles TI	
you.	
Follow Up Date:	
Action:	
೯ ಸರ್	
Signature	
f Required:	
COC#:	
Date:	
Printed Name:	
Signature:	

13760 Magnolia Ave. Chino CA 91710Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Login: Check List

 $04\text{-}02809\ (0470_\ 228)\ (2202777_\ 228)$

05/05/04

Part 1: General Information

-			
	Company Information	Name:	GEOFON, Inc.
		Address:	22632 Golden Spring Dr Ste 270 ,Diamond Bar ,CA 91765
	Project Information	Project Description:	JPL GW Mon 2Q04
			MW-17
		Project #:	4-12812
	Billing Information	P.O. #:	
		Bill Address:	22632 Golden Spring Dr Ste 270 , Diamond Bar , CA 91765
		Lab Project ID:	
		Client Database #:	3
	Receiving Information	Who Received Sample?	Kenny Chan
		Receiving Date/Time:	05/05/04 1310
		COC No.	0097
	Shipping Information	Shipping Company	APCL pick up
		Packing Information:	Cooler/Ice Chester
		Cooler Temperature:	3.1 ° C
	Container Information	Container Provider:	Client
	Sampling Information	Sampling Person:	TM/JJ/MM
		Sampling Company:	Client
□	Turn-Around-Time Opti	on:	Normal
	QC Option:		NEESA C
	Disposal Option:		Not specify

04-02809 Check List Login on 05/05/04 File: TMP011c.tex

Page: 1 3103

Part 2: Sample Information

Seq.	Sample ID	Sample	APCL		Cont-	Preser-	Vol, ml	# of	Condition	Collected		Compositè	TAT	,
#	(on COC)	Sub-ID	Sample ID	Matrix	tainer	vative	Am. g	Replica	G, L, B	mmddyy	Hold?	Group	Day	5
1	MW-17-5	VOC	04-02809(6)α	′ w	V	С	40	6	G	050504	N	0	9	
	MW-17-5	PH/TDS	04-02809-6- eta	W	P		500	2	G	050504	N	0	9	
	MW-17-5	300	04-02809-6- γ	W	P		500	2	G	050504	N	0	9	
	MW-17-5	Metal	04-02809-6- δ	W	P	N	500	2	G	050504	N	0	9	
2	MW-17-4	VOC	04-02809-5- $lpha$	W	V	C	40	3	G	050504	N	0	9	
	MW-17-4	DOIX	04-02809-5- eta	W	G		1000	1	G	050504	N	0	9	
	MW-17-4	PH/TDS	04-02809-5- γ	W	P		500	1	G	050504	N	0	9	
	MW-17-4	300	04-02809-5- δ	W	P		500	1	G	050504	N	0	9	
	MW-17-4	Metal	04-02809-5- ζ	W	P	N	500	1	G	050504	N	0	9	
3	MW-17-3 ,	VOC	04-02809-4- α	W	V	C	40	3	G	050504	N	0	9	
	MW-17-3	PH/TDS	04-02809-4- β	W	P		500	1	G	050504	N	0	9	
	MW-17-3	300	04-02809-4- γ	W	Р		500	1	G	050504	N	0	9	
	MW-17-3	Metal	$04\text{-}02809\text{-}4\text{-}\delta$	W	P	N	500	1	G	050504	N	0	9	
4	MW-17-2	voc	04-02809-3- α	W	v	С	40	3	G	050504	N	0	9	
	MW-17-2	PH/TDS	04-02809-3- eta	W	P		500	1	G	050504	N	0	9	
	MW-17-2	300	04-02809-3- γ	W	P		500	1	G	050504	N	0	9	
	MW-17-2	Metal	04-02809-3- δ	w	P	N	500	1	G	050504	N	0	9	
5	MW-17-1,	VOC	04-02809-2- $lpha$	W	ν	С	40	3	, G	050504	N	0	9	
	MW-17-1	PH/TDS	04-02809-2- β	W	P		500	1	G	050504	N	0	9	
	MW-17-1	300	04-02809-2- γ	W	P		500	1	G	050504	N	0	9	
	MW-17-1	Metal	$04-02809-2-\delta$	W	P	N	500	1	G	050504	N	0	9	
6	EB-5-5/5/04	voc	04-02809-1- α	W	V	C	40	3	G	050504	N	0	9	
	EB-5-5/5/04	PH/TDS	04-02809-1- $oldsymbol{eta}$	W	P		500	1	G	050504	N	0	9	
	EB-5-5/5/04	300	04-02809-1-γ	W	P		500	1	G	050504	N	0	9	
	EB-5-5/5/04	Metal	04-02809-1- δ	W	P	N	500	1	G	050504	N	0	9	
7	TB-5-5/5/04	voc	04-02809-7	W	٧	C	40	2	G	050504	N	0	9	

Part 3: Analysis Information

•		
Test Items:	☐ 524.2	Volatile Organic Compounds
	☐ 7196A	Chromium (VI)
	☐ 314.0/300.0	Perchlorate, low level
	□ 300.0	Chloride Cl by IC
	□ 300.0	Sulfate $(SO_4^{})$, by IC
	☐ 300.0/SM4500N	OMG trate (${ m NO}_3^-$) as N by IC
	□ SM2320B	Carbonate
	□ SM2320B	Bicarbonate
	☐ 9040B/150.1	рН
	□ 160.1	Solids, Total Dissolved (TDS)